by ichizerofm
サーバーサイドエンジニア二人による雑談番組です。 主にプログラミング言語やデータベース、devopsツールの話などをします。
Language
🇯🇵
Publishing Since
9/28/2024
Email Addresses
0 available
Phone Numbers
0 available
April 26, 2025
AWSがDefnyという言語を用いてIAMの仕様検証と実装の置き換えを行った件について、解説論文をネタに雑談しています。後半は次期Pythonで実装されると思われるt-stringという新しいリテラル表記について話しました。 Formally verified cloud-scale authorization - Amazon Science AWS re:Inforce 2024 - Proving the correctness of AWS authorization (IAM401) 以前紹介した記事 An unexpected discovery: Automated reasoning often makes systems more efficient and easier to maintain | AWS Security Blog PEP 750 – Template Strings Chapters:(00:00) Opening(03:28) Formally verified cloud-scale authorization 論文の概要(12:28) Dafny言語(19:10) shadowテスト(25:15) PEP 750 Template String
April 19, 2025
CephがPOSIX File Systemを使うのをやめBlueStoreという独自のbackendを作って最適化を行った話からAI時代の生存戦略の悩みを吐露したりしました。 File systems unfit as distributed storage backends: lessons from 10 years of Ceph evolution Cephの論文を紹介したポスト https://x.com/petereliaskraft/status/1906420979896893823 database.news GraalVM Updated For Java 24, Adds Graal Neural Network Profiler For Better Performance - Phoronix GraalNN: Context-Sensitive Static Profiling with Graph Neural Networks | Proceedings of the 23rd ACM/IEEE International Symposium on Code Generation and Optimization Announcing Oracle GraalVM for JDK 24 Chapters:(00:00) Opening - AIサービス使ってる?(08:22) Lessons from 10 Years of Ceph Evolution(17:53) database.news(20:42) Graal Neural Network Profiler For Better Performance
April 12, 2025
同タイトルの、SIGMODに掲載される予定の論文を肴に雑談しました。HTAPやUserspace Interruptsについてふわっとしゃべっています。 Low-Latency Transaction Scheduling via Userspace Interrupts TiDBのHTAP IIJエンジニアリング、白井データセンターキャンパスでナノ秒単位の時刻同期精度を持つPTP時刻同期サービスを提供開始 Chapters: (00:00) Opening - 花粉(01:55) Low-Latency Transaction Scheduling via Userspace Interrupts(05:50) Userspace Interruptsとは(10:02) 協調threadとPreemptionの課題(18:43) Userspace Interruptsの可能性(21:58) TiDBのHTAP(26:38) PTPの導入事例(29:36) Ending
Pod Engine is not affiliated with, endorsed by, or officially connected with any of the podcasts displayed on this platform. We operate independently as a podcast discovery and analytics service.
All podcast artwork, thumbnails, and content displayed on this page are the property of their respective owners and are protected by applicable copyright laws. This includes, but is not limited to, podcast cover art, episode artwork, show descriptions, episode titles, transcripts, audio snippets, and any other content originating from the podcast creators or their licensors.
We display this content under fair use principles and/or implied license for the purpose of podcast discovery, information, and commentary. We make no claim of ownership over any podcast content, artwork, or related materials shown on this platform. All trademarks, service marks, and trade names are the property of their respective owners.
While we strive to ensure all content usage is properly authorized, if you are a rights holder and believe your content is being used inappropriately or without proper authorization, please contact us immediately at [email protected] for prompt review and appropriate action, which may include content removal or proper attribution.
By accessing and using this platform, you acknowledge and agree to respect all applicable copyright laws and intellectual property rights of content owners. Any unauthorized reproduction, distribution, or commercial use of the content displayed on this platform is strictly prohibited.