<p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">《汽车之心·行家说》是一档由聚焦智能汽车的大咖在线直播分享经验、洞察和方法论的原创沙龙栏目;定期邀请业内行家和大咖,分享关于品牌技术、管理的见解。</p><span><br /></span><br />
Language
🇨🇳
Publishing Since
3/2/2020
Email Addresses
1 available
Phone Numbers
0 available
January 3, 2024
<p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">本期分享嘉宾:周鹏,百度智能汽车业务部舱驾融合技术主任架构师。</p>
December 8, 2023
<p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">随着高阶自动驾驶迈向城区量产场景,系统感知、决策、执行等各方面架构迎来全新升级。当前,产业以「BEV+数据闭环」为最新一代自动驾驶量产系统的核心架构,数据量与数据闭环能力或将成为下半场从 1 到 N 的胜负关键。</p><span><br></span><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">自研能力较强的主机厂,以及具有丰富数据处理经验或测绘资质的供应商在 know-how 积累方面虽然更具优势,但如何具体实现数据闭环?轻地图是否可以重塑自动驾驶的未来?如何通过数据闭环的正向循环带动大模型快速迭代?</p><span><br></span><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">本期圆桌论坛,「汽车之心·行家说」将首次汇聚智能驾驶生态圈的重点角色,期待邀请来自主机厂、芯片厂商、自动驾驶软件供应商、图商领域的技术专家,通过关于「轻地图与数据闭环如何赋能车企快速落地城市 NOA 智驾能力」的探讨,为产业阐明发展趋势与重点关注方向。</p><span><br></span><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">重点探讨内容: </p><span><br></span><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">1、面对轻地图与数据闭环,主机厂的规划与需求是怎样的?</p><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">2、从众源建图到数据闭环,不同的芯片将如何选型与适配?</p><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">3、为量产车做数据闭环,有哪些核心技术难点?</p><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">4、图商角度如何看待轻地图路线?高精地图是负担还是利刃?</p><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">5、关于自动驾驶的数据闭环,车企、图商、芯片公司以及自动驾驶公司等等各方,如何参与进来?</p><span><br></span><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">本期邀请嘉宾: </p><span><br></span><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">易红军,零束科技地图定位负责人 </p><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">张宏志,地平线副总裁&智能汽车事业部业务拓展负责人</p><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">李东旻,觉非科技 CEO </p><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">刘斌,觉非科技联合创始人与技术合伙人 </p><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">王闯,全道科技执行董事</p><span><br></span><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal"><img data-key="0" src="http://imagev2.xmcdn.com/storages/0ab7-audiofreehighqps/6E/0F/GKwRIJIJSKwgABR7xgKIn3pK.jpg!op_type=4&upload_type=attachment&device_type=ios&name=mobile_large" alt="11月15日圆桌海报5人.jpg" data-origin="http://fdfs.xmcdn.com/storages/0ab7-audiofreehighqps/6E/0F/GKwRIJIJSKwgABR7xgKIn3pK.jpg" data-preview-width="140" data-large="http://imagev2.xmcdn.com/storages/0ab7-audiofreehighqps/6E/0F/GKwRIJIJSKwgABR7xgKIn3pK.jpg!op_type=4&upload_type=attachment&device_type=ios&name=mobile_large" data-large-height="1589" data-preview="http://imagev2.xmcdn.com/storages/0ab7-audiofreehighqps/6E/0F/GKwRIJIJSKwgABR7xgKIn3pK.jpg!op_type=4&upload_type=attachment&device_type=ios&name=mobile_small" data-large-width="750" data-preview-height="296"></p>
July 22, 2023
<p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal"><span>【本期嘉宾】</span></p><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica, Arial, sans-serif;hyphens:auto;text-align:justify;" data-flag="normal"><span>李博,鉴智机器人副总裁,软件技术负责人。中科院高性能计算方向博士,清华大学自动化专业学士;国内最早的将 GPU 集群用于大规模深度学习训练的团队创始研发成员;于业界率先提出基于数据流图的 AI 软件构建框架;在多个主流异构计算平台上完成规模化 AI 项目落地。</span></p><span><br></span><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica, Arial, sans-serif;hyphens:auto;text-align:justify;" data-flag="normal"><span>【本期主题】</span></p><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica, Arial, sans-serif;hyphens:auto;text-align:justify;" data-flag="normal">面向量产的异构平台软件工程之路</p><span><br></span><p data-flag="normal" style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;"><span>【分享要点】</span></p><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal"><span>1. 量产引擎:鉴智机器人异构计算开发范式</span></p><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal"><span>2. 性能挖掘!单征程 5+TC397 实现极致性价比的高速 NOA 系统方案</span></p><p style="color:#333333;font-weight:normal;font-size:16px;line-height:30px;font-family:Helvetica,Arial,sans-serif;hyphens:auto;text-align:justify;" data-flag="normal"><span>3. 未来何方?算法、软件、硬件协同优化道阻且长</span></p><img data-key="0" src="http://imagev2.xmcdn.com/storages/3d82-audiofreehighqps/FF/05/GKwRIMAIkPn8AATyeQI730lN.jpg!op_type=4&device_type=ios&upload_type=attachment&name=mobile_large" alt="" data-origin="http://imagev2.xmcdn.com/storages/3d82-audiofreehighqps/FF/05/GKwRIMAIkPn8AATyeQI730lN.jpg?op_type=0" data-large="http://imagev2.xmcdn.com/storages/3d82-audiofreehighqps/FF/05/GKwRIMAIkPn8AATyeQI730lN.jpg!op_type=4&device_type=ios&upload_type=attachment&name=mobile_large" data-large-width="750" data-large-height="1337.80276816609" data-preview="http://imagev2.xmcdn.com/storages/3d82-audiofreehighqps/FF/05/GKwRIMAIkPn8AATyeQI730lN.jpg!op_type=4&device_type=ios&upload_type=attachment&name=mobile_small" data-preview-width="140" data-preview-height="249.72318339100346"><span><br></span><br><span><br></span><br>
Pod Engine is not affiliated with, endorsed by, or officially connected with any of the podcasts displayed on this platform. We operate independently as a podcast discovery and analytics service.
All podcast artwork, thumbnails, and content displayed on this page are the property of their respective owners and are protected by applicable copyright laws. This includes, but is not limited to, podcast cover art, episode artwork, show descriptions, episode titles, transcripts, audio snippets, and any other content originating from the podcast creators or their licensors.
We display this content under fair use principles and/or implied license for the purpose of podcast discovery, information, and commentary. We make no claim of ownership over any podcast content, artwork, or related materials shown on this platform. All trademarks, service marks, and trade names are the property of their respective owners.
While we strive to ensure all content usage is properly authorized, if you are a rights holder and believe your content is being used inappropriately or without proper authorization, please contact us immediately at [email protected] for prompt review and appropriate action, which may include content removal or proper attribution.
By accessing and using this platform, you acknowledge and agree to respect all applicable copyright laws and intellectual property rights of content owners. Any unauthorized reproduction, distribution, or commercial use of the content displayed on this platform is strictly prohibited.