by mztkn
各位CSO好,这是一档分享网络安全建设干货的双人对话播客,emm~和全麦面包一样干
Language
🇨🇳
Publishing Since
11/4/2024
Email Addresses
1 available
Phone Numbers
0 available
April 26, 2025
<p>如何在云环境下做好安全运营的效果成为了大量企业面临的安全重要挑战。尤其是企业使用多家公有云时,多云环境下统一安全运营便成为难题,企业希望通过本地的一个安全运营中心SOC把所有云的安全都管理起来。我们从以下几个点来看看现在的好方法。</p><p>1、我们公司有多个公有云,本地也有私有云,我想把全部主机的访问关系都一盘棋看到。特别注意,我不想再额外部署任何其他安全厂商的主机安全,我在各个云上已经有不同品牌的主机安全了。</p><p>方案:利用安全运营平台SOC,与公有云平台运维API进行数据对接,从而获取云上全量资产和网络数据,结合图数据库技术最终进行拓扑图绘制与展示。</p><p>2、如果我还是想看流量侧的各个风险怎么做,云上很难像本地一样部署探针</p><p>1️⃣直接云厂商的NDR产生的各个安全告警等日志传到安全运营中心SOC进行综合分析。</p><p>2️⃣在云上部署传统安全厂商的虚拟化探针,云主机网卡转发流量到虚拟探针即可。或者把多个VPC的虚拟交换机流量镜像到虚拟话探针。需要注意的是部分云厂商有收费和可用区限制,且如果仅镜像虚拟交换机的流量那云主机的东西向流量便无法检测到了。</p><p>3️⃣安装传统厂商的终端探针,需要在云主机上安装Agent进行流量转发,需要注意的是有可能会影响云主机性能。</p><p>3、云上有啥比本地好的安全措施吗</p><p>由于本地很难去看东西向流量,而云上可以通过对接云API很容易拿到这部分数据,所以会有一个新能力:云攻击路径预测分析。即是基于云网络访问关系、云环境配置信息、云上漏洞信息,自动化的预测存在高危风险同时暴露外网的攻击入口,并预测入口资产实现后黑客可能横向移动方向,形成云攻击路径预测分析能力。云攻击路径区别于业界已有的“事后攻击链分析和还原”,旨在以攻击者视角事前预测云环境中存在的实际可利用攻击路径。</p>
April 15, 2025
<p><strong>选自公众号:安全村SecUN</strong></p><p><strong>原文链接:https://mp.weixin.qq.com/s/0DDAKqWA7c5RzD3lox0rdw</strong></p><p>网络安全AI说:原文更精彩,篇幅较长,很详细的讲述了自身对攻击面管理的看法,长江证券的老师们对这块的研究确实非常深入,感兴趣的各位建议可看下原文,很体系化。</p><figure><img src="https://image.xyzcdn.net/FjPUlgGD5lXJqVQjowq3RYSpzxNY.png"/></figure>
April 7, 2025
<p> 苹果公司会对其供应链体系内的公司,做网络安全现状的现状调查,安全要求较为具体,评估结果会和苹果给到的订单正相关。苹果会通过邮件的形式发送要求整改的文档给到供应商,让供应商对标进行整改。整改完成后会给到要求其使用对话框回复给到苹果官方,最后苹果官方评估是否符合要求,如审核通过后,会关闭该弹窗的对话框。如限期内无法完成整改,则会发邮件警告。</p><p>以下列举部分苹果的要求以及业内的解决方案</p>
Pod Engine is not affiliated with, endorsed by, or officially connected with any of the podcasts displayed on this platform. We operate independently as a podcast discovery and analytics service.
All podcast artwork, thumbnails, and content displayed on this page are the property of their respective owners and are protected by applicable copyright laws. This includes, but is not limited to, podcast cover art, episode artwork, show descriptions, episode titles, transcripts, audio snippets, and any other content originating from the podcast creators or their licensors.
We display this content under fair use principles and/or implied license for the purpose of podcast discovery, information, and commentary. We make no claim of ownership over any podcast content, artwork, or related materials shown on this platform. All trademarks, service marks, and trade names are the property of their respective owners.
While we strive to ensure all content usage is properly authorized, if you are a rights holder and believe your content is being used inappropriately or without proper authorization, please contact us immediately at [email protected] for prompt review and appropriate action, which may include content removal or proper attribution.
By accessing and using this platform, you acknowledge and agree to respect all applicable copyright laws and intellectual property rights of content owners. Any unauthorized reproduction, distribution, or commercial use of the content displayed on this platform is strictly prohibited.